NONPARAMETRIC RECURSIVE KERNEL ESTIMATORS OF DISTRIBUTION FUNCTIONS
نویسندگان
چکیده
منابع مشابه
Universal consistency of kernel nonparametric M-estimators
We prove that in the case of independent and identically distributed random vectors (Xi, Yi) a class of kernel type M-estimators is universally and strongly consistent for conditional M-functionals. The term universal means that the strong consistency holds for all joint probability distributions of (X, Y ). The conditional M-functional minimizes (2.2) for almost every x. In the case M(y) = |y|...
متن کاملNonparametric density deconvolution by weighted kernel estimators
JSM, Denver, 4 August 2008 – 3 / 23 We observe a univariate random sample Y1, . . . , Yn from a density g, where Yi = Xi + Zi (i = 1, . . . , n). Here X1, . . . , Xn are independent and identically distributed with unknown continuous density f , and the measurement errors Z1, . . . , Zn form a random sample from the continuous density η which we assume to be known. Our goal is to obtain a nonpa...
متن کاملWeighted Kernel Estimators in Nonparametric Binomial Regression
This paper is concerned with nonparametric binomial regression. Two kernel-based binomial regression estimators and their bias-adjusted versions are proposed, whose kernels are weighted by the inverses of variance estimators of the observed proportion at each covariate. Asymptotic theories for deriving asymptotic mean squared errors (AMSEs) of proposed estimators are developed. Comparisons with...
متن کاملOptimal bandwidth selection for semi-recursive kernel regression estimators
In this paper we propose an automatic selection of the bandwidth of the semi-recursive kernel estimators of a regression function defined by the stochastic approximation algorithm. We showed that, using the selected bandwidth and some special stepsizes, the proposed semi-recursive estimators will be very competitive to the nonrecursive one in terms of estimation error but much better in terms o...
متن کاملNonparametric Bayes Inference for Concave Distribution Functions
A way of making Bayesian inference for concave distribution functions is introduced. This is done by uniquely transforming a mixture of Dirichlet processes on the space of distribution functions to the space of concave distribution functions. The approach also gives a way of making Bayesian analysis of mul-tiplicatively censored data. We give a method for sampling from the posterior distributio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of informatics and cybernetics
سال: 1994
ISSN: 0286-522X
DOI: 10.5109/13435